204 research outputs found

    Finite element analysis of protective bicycle helmet & dummy head under dynamic loading

    Get PDF
    Cycling is a good activities particularly for recreation, exercise, and transportation. However, cycling related to the head injury is a significant contributor to hospitalization and death. Previous literatures indicates that the available helmets have less effective in preventing head injuries among cyclists. Moreover, most of the available helmets have been tested for only a few loading conditions. Therefore, the purpose of this study is to use finite element models to evaluate the protective effect of a helmet against various impact velocities. The head and helmet model has been developed using computational software. This study focus on the explicit dynamic analysis which performed in ANSY-WORKBENCH with loading condition in term of various impact velocity impacted on front and side of the head model. The results indicates the differences between the frontal and side simulations. They have been compared to identify the protective effect of the helmet and head

    Finite element analysis of osteoporotic vertebrae with first lumbar (L1) vertebral compression fracture

    Get PDF
    The aim of this work is to assess the biomechanical response or load transfer response between osteoporotic (with first lumbar (L1) vertebral compression fracture) and healthy vertebrae in five vertebral physiological motions namely as compression, flexion, extension, lateral bending and axial rotation. For this purpose, an image-based heterogeneous three-dimensional patient-specific of lumbar and thoracic spinal unit (T12-L2) finite element models for healthy and osteoporotic subjects were created. The finite element analysis have shown that one of the most significant effects of osteoporosis is the tendency to produce higher stress and strain in the cancellous region of the vertebral body. The maximum stress and strain was 4.53 fold (compression) and 5.43 fold (axial rotation) higher for the osteoporotic than the healthy subject, respectively, under the similar loading activity. Uneven stress distribution patterns also have been detected in the osteoporotic vertebrae rather than the healthy vertebrae. All of these characteristics are reflected by a reduced structural strength and bone mass which might lead to an increased risk of fracture. These results strengthen the paradigm of a strong relationship between osteoporosis and its high susceptibility to fracture

    Characterization and modeling of a new magnetorheological damper with meandering type valve using neuro-fuzzy

    Get PDF
    This paper presents the characterization and hysteresis modeling of magnetorheological (MR) damper with meandering type valve. The meandering type MR valve, which employs the combination of multiple annular and radial flow passages, has been introduced as the new type of high performance MR valve with higher achievable pressure drop and controllable performance range than similar counterparts in its class. Since the performance of a damper is highly determined by the valve performance, the utilization of the meandering type MR valve in an MR damper could potentially improve the damper performance. The damping force characterization of the MR damper is conducted by measuring the damping force as a response to the variety of harmonic excitations. The hysteresis behavior of the damper is identified by plotting the damping force relationship to the excitation displacement and velocity. For the hysteresis modeling purpose, some parts of the data are taken as the training data source for the optimization parameters in the neuro-fuzzy model. The performance of the trained neuro-fuzzy model is assessed by validating the model output with the remaining measurement data and benchmarking the results with the output of the parametric hysteresis model. The validation results show that the neuro-fuzzy model is demonstrating good agreement with the measurement results indicated by the average relative error of only around 7%. The model also shows robustness with no tendency of growing error when the input values are changed

    A concentric design of a bypass magnetorheological fluid damper with serpentine flux valve

    Get PDF
    This work presents a new concentric design structure of a bypass magnetorheological (MR) damper with a serpentine flux valve type. In this design, the serpentine valve is installed not in the middle of the piston but on the bypass channel of the damper. However, to make it less bulky, the location of the valve installation is chosen to be in line with the cylinder axis, which is different from the common configuration of the bypass damper. With the proposed design concept, the performance flexibility of the bypass configuration and the compactness of the piston valve configuration can be accomplished. In this study, these benefits were demonstrated by firstly deriving an analytical model of the proposed MR damper focusing on the bypass concentric valve structure, which is vital in determining the damping force characteristics. The prototype of MR damper was also fabricated and characterized using the dynamic test machine. The simulation results show that the damping force could be adjusted from 20 N in the off-state to around 600 N in the on-state with 0.3 A of excitation current. In the experiments, during low piston velocity measurement, the on-state results from the simulation were generally in good agreement with the experimental results. However, with the increase in piston velocity, the deviation between the simulation and the experiment gets higher. The deviations are most probably due to seal frictions that were not accounted for in the model. The seal friction is probably dominant as the seals in the prototype need to be prepared for handling higher fluid pressure. As a result, the frictions are quite prevalent and significantly affect the measured off-state damping forces as well, where it was recorded ten times higher than the predicted values from the model. Nevertheless, although there were deviations, the dynamic range of the concentric bypass structure is still 1.5 times higher than the conventional structure and the new structure can be potentially explored more to achieve an improved MR damper design

    Scalability challenges in healthcare blockchain system - a systematic review

    Get PDF
    Blockchain technology is a private, secure, trustworthy, and transparent information exchange performed in a decentralised manner. In this case, the coordination and validation efforts are simplified as the records are designed to update regularly and there is no difference in the two databases. This review focuses on how the blockchain addresses scalability challenges and provides solutions in the healthcare field through the implementation of blockchain technology. Accordingly, 16 solutions fell under two main areas, namely storage optimization and redesign of blockchain. However, limitations persist, including block size, high volume of data, transactions, number of nodes, and protocol challenges. This review consists of six stages, namely identification of research question, procedures of research, screening of relevant articles, keywording based on the abstract, data extraction, and mapping process. Through Atlas.ti software, the selected keywords were used to analyse through the relevant articles. As a result, 48 codes and 403 quotations were compiled. Manual coding was performed to categorise the quotations. The codes were then mapped onto the network as a mapping process. Notably, 16 solutions fell under two main areas, namely storage optimization and redesign of blockchain. Basically, there are 3 solutions compiled for storage optimization and 13 solutions for the redesign of the blockchain, namely blockchain modelling, read mechanism, write mechanism, and bi-directional network

    Solvent dependence of the rheological properties in hydrogel magnetorheological plastomer

    Get PDF
    Chemically crosslinked hydrogel magnetorheological (MR) plastomer (MRP) embedded with carbonyl iron particles (CIPs) exhibits excellent magnetic performance (MR effect) in the presence of external stimuli especially magnetic field. However, oxidation and desiccation in hydrogel MRP due to a large amount of water content as a dispersing phase would limit its usage for long‐term applications, especially in industrial engineering. In this study, different solvents such as dimethyl sulfoxide (DMSO) are also used to prepare polyvinyl alcohol (PVA) hydrogel MRP. Thus, to understand the dynamic viscoelastic properties of hydrogel MRP, three different samples with different solvents: water, DMSO, and their binary mixtures (DMSO/water) were prepared and systematically carried out using the oscillatory shear. The outcomes demonstrate that the PVA hydrogel MRP prepared from precursor gel with water shows the highest MR effect of 15,544% among the PVA hydrogel MRPs. However, the samples exhibit less stability and tend to oxidise after a month. Meanwhile, the samples with binary mixtures (DMSO/water) show an acceptable MR effect of 11,024% with good stability and no CIPs oxidation. Otherwise, the sample with DMSO has the lowest MR effect of 7049% and less stable compared to the binary solvent samples. This confirms that the utilisation of DMSO as a new solvent affects the rheological properties and stability of the samples

    Improving Vehicle Ride and Handling Using LQG CNF Fusion Control Strategy for an Active Antiroll Bar System

    Get PDF
    This paper analyses a comparison of performance for an active antiroll bar (ARB) system using two types of control strategy. First of all, the LQG control strategy is investigated and then a novel LQG CNF fusion control method is developed to improve the performances on vehicle ride and handling for an active antiroll bar system. However, the ARB system has to balance the trade-off between ride and handling performance, where the CNF consists of a linear feedback law and a nonlinear feedback law. Typically, the linear feedback is designed to yield a quick response at the initial stage, while the nonlinear feedback law is used to smooth out overshoots in the system output when it approaches the target reference. The half car model is combined with a linear single track model with roll dynamics which are used for the analysis and simulation of ride and handling. The performances of the control strategies are compared and the simulation results show the LQG CNF fusion improves the performances in vehicle ride and handling

    The fusion of HRV and EMG signals for automatic gender recognition during stepping exercise

    Get PDF
    In this paper, a new gender recognition framework based on fusion of features extracted from healthy people electromyogram (EMG) and heart rate variability (HRV) during stepping activity using a stepper machine is proposed. An approach is investigated for the fusion of EMG and HRV which is feature fusion. The feature fusion is carried out by concatenating the feature vector extracted from the EMG and HRV signals. A proposed framework consists of a sequence of processing steps which are preprocessing, feature extraction, feature selection and lastly the fusion. The results shown that the fusion approach had improved the performance of gender recognition compared to solely on EMG or HRV based gender identifier
    corecore